Structured Support Vector Machine

Hung-yi Lee

公告

－因為作業二的 deadline 正好卡到期中考週，為了不要讓大家太辛苦，所以作業二的 deadline 延後

- 週
- 作業二的 deadline 延後到 $11 / 20$
- 作業三公布的日期和 deadline不變
- 作業三公布的日期仍然為 11／13
- 也就是說，作業二和作業三會有一週的重疊

Structured Learning

- We need a more powerful function f
- Input and output are both objects with structures
- Object: sequence, list, tree, bounding box ...

$$
f: X \rightarrow Y
$$

\boldsymbol{X} is the space of
one kind of object
\boldsymbol{Y} is the space of another kind of object

Unified Framework

Step 1: Training

- Find a function F

$$
\mathrm{F}: X \times Y \rightarrow \mathrm{R}
$$

- $F(x, y)$: evaluate how compatible the objects x and y is

Step 2: Inference (Testing)

- Given an object x

$$
\tilde{y}=\arg \max _{y \in Y} F(x, y)
$$

Three Problems

Problem 1: Evaluation

- What does $F(x, y)$ look like?

Problem 2: Inference

- How to solve the "arg max" problem

$$
y=\arg \max _{y \in Y} F(x, y)
$$

Problem 3: Training

- Given training data, how to find $F(x, y)$

Example Task: Object Detection

Example Task

Keep in mind that what you will learn today can be applied to other tasks.

Source of image:
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.295.6007\&rep=rep1\&type=pdf http://www.vision.ee.ethz.ch/~hpedemo/gallery.php

Problem 1: Evaluation

- $F(x, y)$ is linear

Open question: What if $F(x, y)$ is not linear?

Problem 2: Inference

$$
\tilde{y}=\arg \max _{y \in \mathbb{Y}} w \cdot \phi(x, y)
$$

Problem 2: Inference

"I think you should be more explicit here in step two."

- Object Detection
- Branch and Bound algorithm
- Selective Search
- Sequence Labeling
- Viterbi Algorithm
- The algorithms can depend on $\phi(x, y)$
- Genetic Algorithm
- Open question:
- What happens if the inference is non exact?

Problem 3: Training

Principle

Training data: $\left\{\left(x^{1}, \hat{y}^{1}\right),\left(x^{2}, \hat{y}^{2}\right), \ldots,\left(x^{\mathrm{N}}, \hat{y}^{\mathrm{N}}\right)\right\}$
We should find $\mathrm{F}(\mathrm{x}, \mathrm{y})$ such that

$$
\begin{aligned}
& \begin{array}{l}
\mathrm{F}\left(x^{1}, \hat{y}^{1}\right) \\
\mathrm{F}\left(x^{1}, y\right) \\
\text { for all } \\
y \neq \hat{y}^{1}
\end{array}\left\{\begin{array}{|}
\perp \\
\boldsymbol{\eta}
\end{array}\right. \\
& \left.\begin{array}{c}
\mathrm{F}\left(x^{\mathrm{N}}, \hat{y}^{\mathrm{N}}\right) \\
\mathrm{F}\left(x^{\mathrm{N}}, y\right) \\
\text { for all } \\
y \neq \hat{y}^{\mathrm{N}}
\end{array}\right) \neq
\end{aligned}
$$

Let's ignore problems 1 and 2 and only focus on problem 3 today.

Outline

Separable case
Non-separable case
Considering Errors
Regularization
Structured SVM

Cutting Plane Algorithm for Structured SVM

Multi-class and binary SVM

Beyond Structured SVM (open question)

Outline

Separable case
 Non-separable case
 Considering Errors
 Regularization
 Structured SVM

Cutting Plane Algorithm for Structured SVM

Multi-class and binary SVM

Beyond Structured SVM (open question)

Assumption: Separable

- There exists a weight vector \widehat{w}

$$
\begin{aligned}
& \hat{w} \cdot \phi\left(x^{1}, \hat{y}^{1}\right) \geq \hat{w} \cdot \phi\left(x^{1}, y\right)+\delta \\
& \hat{w} \cdot \phi\left(x^{2}, \hat{y}^{2}\right) \geq \hat{w} \cdot \phi\left(x^{2}, y\right)+\delta
\end{aligned}
$$

- $\phi\left(x^{1}, \hat{y}^{1}\right)$
- $\phi\left(x^{1}, y\right)$
$\star \phi\left(x^{2}, \hat{y}^{2}\right)$
$\star \phi\left(x^{2}, y\right)$

Structured Perceptron

- Input: training data set $\left\{\left(x^{1}, \hat{y}^{1}\right),\left(x^{2}, \hat{y}^{2}\right), \ldots,\left(x^{\mathrm{N}}, \hat{y}^{\mathrm{N}}\right)\right\}$
- Output: weight vector w
- Algorithm: Initialize w=0
- do
- For each pair of training example $\left(x^{n}, \hat{y}^{n}\right)$
- Find the label \tilde{y}^{n} maximizing $w \cdot \phi\left(x^{n}, y\right)$

$$
\tilde{y}^{n}=\arg \max _{y \in Y} w \cdot \phi\left(x^{n}, y\right)(\text { problem } 2)
$$

- If $\tilde{y}^{n} \neq \hat{y}^{n}$, update w

$$
w \rightarrow w+\phi\left(x^{n}, \hat{y}^{n}\right)-\phi\left(x^{n}, \tilde{y}^{n}\right)
$$

- until w is not updated \longrightarrow We are done!

Warning of Math

In separable case, to obtain a \widehat{w}, you only have to update at most $(R / \delta)^{2}$ times
δ : margin
R : the largest distance between $\phi(x, y)$ and $\phi\left(x, y^{\prime}\right)$

Not related to the space of y !

Proof of Termination

w is updated once it sees a mistake

$$
\begin{aligned}
& w^{0}=0 \rightarrow w^{1} \rightarrow w^{2} \rightarrow \ldots \ldots \rightarrow w^{k} \rightarrow w^{k+1} \rightarrow \ldots \ldots \\
& \left.w^{k}=w^{k-1}+\phi\left(x^{n}, \hat{y}^{n}\right)-\phi\left(x^{n}, \tilde{y}^{n}\right) \text { (the relation of } w^{k} \text { and } w^{k-1}\right)
\end{aligned}
$$

Remind: we are considering the separable case
Assume there exists a weight vector \widehat{w} such that
$\forall n$ (All training examples)
$\forall y \in Y-\left\{\hat{y}^{n}\right\}$ (All incorrect label for an example)

$$
\hat{w} \cdot \phi\left(x^{n}, \hat{y}^{n}\right) \geq \hat{w} \cdot \phi\left(x^{n}, y\right)+\delta
$$

Assume $\|\widehat{w}\|=1$ without loss of generality

Proof of Termination

w is updated once it sees a mistake

$$
\begin{aligned}
& w^{0}=0 \rightarrow w^{1} \rightarrow w^{2} \rightarrow \ldots \ldots \rightarrow w^{k} \rightarrow w^{k+1} \rightarrow \ldots \ldots \\
& w^{k}=w^{k-1}+\phi\left(x^{n}, \hat{y}^{n}\right)-\phi\left(x^{n}, \tilde{y}^{n}\right)\left(\text { the relation of } w^{k} \text { and } w^{k-1}\right)
\end{aligned}
$$

Proof that: The angle ρ_{k} between \hat{w} and w^{k} is smaller as k increases
Analysis $\cos \rho_{k}$ (larger and larger?) $\cos \rho_{k}=\frac{\hat{\hat{w}} \cdot w^{k}}{\|\hat{w}\|} \cdot \frac{\left\|w^{k}\right\|}{}$

$$
\begin{aligned}
\hat{w} \cdot w^{k} & =\hat{w} \cdot\left(w^{k-1}+\phi\left(x^{n}, \hat{y}^{n}\right)-\phi\left(x^{n}, \tilde{y}^{n}\right)\right) \\
& =\hat{w} \cdot w^{k-1}+\frac{\hat{w} \cdot \phi\left(x^{n}, \hat{y}^{n}\right)-\hat{w} \cdot \phi\left(x^{n}, \tilde{y}^{n}\right)}{\geq \delta(\text { Separable })} \geq \hat{w} \cdot w^{k-1}+\delta
\end{aligned}
$$

Proof of Termination

w is updated once it sees a mistake

$$
\begin{aligned}
& w^{0}=0 \rightarrow w^{1} \rightarrow w^{2} \rightarrow \ldots \ldots \rightarrow w^{k} \rightarrow w^{k+1} \rightarrow \ldots \ldots \\
& w^{k}=w^{k-1}+\phi\left(x^{n}, \hat{y}^{n}\right)-\phi\left(x^{n}, \tilde{y}^{n}\right)\left(\text { the relation of } w^{k} \text { and } w^{k-1}\right)
\end{aligned}
$$

Proof that: The angle ρ_{k} between \hat{w} and w^{k} is smaller as k increases
Analysis $\cos \rho_{k}$ (larger and larger?) $\cos \rho_{k}=\frac{\hat{w^{2}} \cdot w^{k}}{\|\hat{w}\|}$

$$
\hat{w} \cdot w^{k} \geq \hat{w} \cdot w^{k-1}+\delta
$$

$$
\hat{w} \cdot w^{1} \geq \hat{w} \cdot w^{0}+\delta
$$

$$
\geq \delta
$$

$$
\hat{w} \cdot w^{k} \geq k \delta
$$

$\hat{w} \cdot w^{1} \geq \delta$

$$
\begin{aligned}
& \hat{w} \cdot w^{2} \geq \hat{w} \cdot u \\
& \hat{w} \cdot w^{2} \geq 2 \delta
\end{aligned}
$$

(so what)

Proof of Termination

$$
\cos \rho_{k}=\frac{\hat{w}}{\|\hat{w}\|} \cdot \frac{w^{k}}{\left\|w^{k}\right\|} \quad w^{k}=w^{k-1}+\phi\left(x^{n}, \hat{y}^{n}\right)-\phi\left(x^{n}, \tilde{y}^{n}\right)
$$

$$
\left\|w^{k}\right\|^{2}=\left\|w^{k-1}+\phi\left(x^{n}, \hat{y}^{n}\right)-\phi\left(x^{n}, \tilde{y}^{n}\right)\right\|^{2}
$$

$$
=\left\|w^{k-1}\right\|^{2}+\left.\frac{\| \phi\left(x^{n}, \hat{y}^{n}\right)-\phi\left(x^{n}, \tilde{y}^{n}\right)}{>0}\right|^{2}+\frac{2 w^{k-1} \cdot\left(\phi\left(x^{n}, \hat{y}^{n}\right)-\phi\left(x^{n}, \tilde{y}^{n}\right)\right)}{?<0 \text { (mistake) }}
$$

Assume the distance between any two feature vectors is smaller than R

$$
\leq\left\|w^{k-1}\right\|^{2}+\mathrm{R}^{2}
$$

$$
\begin{aligned}
& \left\|w^{1}\right\|^{2} \leq\left\|w^{0}\right\|^{2}+\mathrm{R}^{2}=\mathrm{R}^{2} \\
& \left\|w^{2}\right\|^{2} \leq\left\|w^{1}\right\|^{2}+\mathrm{R}^{2} \leq 2 \mathrm{R}^{2} \\
& \ldots \\
& \left\|w^{k}\right\|^{2} \leq k \mathrm{R}^{2}
\end{aligned}
$$

Proof of Termination

$$
\begin{array}{rlrl}
\cos \rho_{k} & =\frac{\hat{w}}{\|\hat{w}\|} \cdot \frac{w^{k}}{\left\|w^{k}\right\|} & \hat{w} \cdot w^{k} \geq k \delta & \left\|w^{k}\right\|^{2} \leq k \mathrm{R}^{2} \\
& \geq \frac{k \delta}{\sqrt{k R^{2}}}=\sqrt{k} \frac{\delta}{R} & \cos \rho_{k} & \cos \rho_{k} \leq 1 \\
\sqrt{k} \frac{\delta}{R} \leq 1 & \\
k & & \sqrt{k} \frac{\delta}{R} \\
& & & \\
\hline
\end{array}
$$

End of Warning

In separable case, to obtain a \widehat{w}, you only have to update at most $(R / \delta)^{2}$ times
δ : margin
R : the largest distance between $\phi(x, y)$ and $\phi\left(x, y^{\prime}\right)$

Not related to the space of y !

How to make training fast?

Outline

Separable case
Considering Errors
Regularization
Structured SVM
Beyond Structured SVM (open question)
Multi-class and binary SVM Algorithm for Structured SVM

Non-separable Case

Undoubtedly, w^{\prime} is better than $w^{\prime \prime}$.

- When the data is non-separable, some weights are still better than the others.

Defining Cost Function

- Define a cost C to evaluate how bad a w is, and then pick the w minimizing the cost C

(Stochastic) Gradient Descent

Find w minimizing the cost C

$$
\begin{aligned}
& C=\sum_{n=1}^{N} C^{n} \\
& C^{n}=\max _{y}\left[w \cdot \phi\left(x^{n}, y\right)\right]-w \cdot \phi\left(x^{n}, \hat{y}^{n}\right)
\end{aligned}
$$

(Stochastic) Gradient descent:
We only have to know how to compute ∇C^{n}.

$$
\text { However, there is "max" in } C^{n} \text {....... }
$$

$$
C^{n}=\max _{y}\left[w \cdot \phi\left(x^{n}, y\right)\right]-w \cdot \phi\left(x^{n}, \hat{y}^{n}\right)
$$

When w is different, the y can be different.

How to compute ∇C^{n} ?

Space of w

∇C^{n}	∇C^{n}
$=\phi\left(x^{n}, y^{\prime \prime}\right)$	$=\phi\left(x^{n}, y^{\prime \prime \prime}\right)$
$-\phi\left(x^{n}, \hat{y}^{n}\right)$	$\angle-\phi\left(x^{n}, \hat{y}^{n}\right)$
$w \cdot \phi\left(x^{n}, y^{\prime \prime}\right)$	$w \cdot \phi\left(x^{n}, y^{\prime \prime \prime}\right)$
$-w \cdot \phi\left(x^{n}, \hat{y}^{n}\right)$	$-w \cdot \phi\left(x^{n}, \hat{y}^{n}\right)$

(Stochastic) Gradient Descent

For $\mathrm{t}=1$ to $\mathrm{T}: \longleftarrow$ Update the parameters T times

Randomly pick a training data $\left\{x^{n}, \hat{y}^{n}\right\} \longleftarrow$ stochastic

$$
\begin{aligned}
\tilde{y}^{n} & =\underset{y}{\operatorname{argmax}}\left[w \cdot \phi\left(x^{n}, y\right)\right] \\
\nabla C^{n} & =\phi\left(x^{n}, \tilde{y}^{n}\right)-\phi\left(x^{n}, \hat{y}^{n}\right) \\
w \rightarrow & w-\eta \nabla C^{n} \\
& =w-\eta\left[\phi\left(x^{n}, \tilde{y}^{n}\right)-\phi\left(x^{n}, \hat{y}^{n}\right)\right]
\end{aligned}
$$

If we set $\eta=1$, then we are doing structured perceptron.

Outline

Separable case
 Non-separable case
 Considering Errors
 Regularization
 Structured SVM

 Cutting Plane Algorithm for Structured SVM

 Cutting Plane Algorithm for Structured SVM
 Multi-class and binary SVM
 Beyond Structured SVM (open question)

Based on what we have considered

The right case is better.

Considering the incorrect ones

How to measure the difference

Defining Error Function

- $\Delta(\hat{y}, y)$: difference between \hat{y} and $y(>0)$
y

$A(y)$: area of bounding box y

$$
\Delta(\hat{y}, y)=1-\frac{A(\hat{y}) \cap A(y)}{A(\hat{y}) \cup A(y)}
$$

Another Cost Function

Gradient Descent

$$
\begin{aligned}
C^{n} & =\max _{y}\left[w \cdot \phi\left(x^{n}, y\right)\right]-w \cdot \phi\left(x^{n}, \hat{y}^{n}\right) \\
C^{n} & =\max _{y}\left[\Delta\left(\hat{y}^{n}, y\right)+w \cdot \phi\left(x^{n}, y\right)\right]-w \cdot \phi\left(x^{n}, \hat{y}^{n}\right)
\end{aligned}
$$

In each iteration, pick a training data $\left\{x^{n}, \hat{y}^{n}\right\}$
$\left.\left.\underset{\tilde{y}^{n}}{\tilde{x}^{n}}=\overline{\operatorname{argmax}\left[w \cdot \phi\left(x^{n}\right.\right.}, y\right)\right] \underset{y}{\operatorname{argmax}}\left[\Delta\left(\hat{y}^{n}, y\right)+w \cdot \phi\left(x^{n}, y\right)\right]$
Oh no! Problem 2.1

$$
\begin{gathered}
\nabla C^{n}(w)=\phi\left(x^{n}, \frac{\tilde{x}^{n}}{\bar{y}^{n}}\right)-\phi\left(x^{n}, \hat{y}^{n}\right) \\
w \rightarrow w-\eta\left[\phi\left(x^{n}, \tilde{x}^{n}\right)-\phi\left(x^{n}, \hat{y}^{n}\right)\right] \\
\bar{y}^{n}
\end{gathered}
$$

Another Viewpoint

$$
\tilde{y}^{n}=\arg \max _{y} w \cdot \phi\left(x^{n}, y\right)
$$

- Minimizing the new cost function is minimizing the upper bound of the errors on training set

$$
C^{\prime}=\sum_{n=1}^{N} \Delta\left(\hat{y}^{n}, \tilde{y}^{n}\right) \leq C=\sum_{n=1}^{N} C^{n} \text { upper bound }
$$

We want to find w minimizing C^{\prime} (errors)
It is hard!
Because y can be any kind of objects, $\Delta(\cdot, \cdot)$ can be any function
C serves as the surrogate of C^{\prime}
Proof that $\Delta\left(\hat{y}^{n}, \tilde{y}^{n}\right) \leq C^{n}$

Another Viewpoint

$$
C^{n}=\max _{y}\left[\Delta\left(\hat{y}^{n}, y\right)+w \cdot \phi\left(x^{n}, y\right)\right]-w \cdot \phi\left(x^{n}, \hat{y}^{n}\right)
$$

Proof that $\Delta\left(\hat{y}^{n}, \tilde{y}^{n}\right) \leq C^{n}$

$$
\begin{aligned}
\Delta\left(\hat{y}^{n}, \tilde{y}^{n}\right) & \leq \Delta\left(\hat{y}^{n}, \tilde{y}^{n}\right)+\frac{\left[w \cdot \phi\left(x^{n}, \tilde{y}^{n}\right)-w \cdot \phi\left(x^{n}, \hat{y}^{n}\right)\right]}{\tilde{y}^{n}=\arg \max _{y} w \cdot \phi\left(x^{n}, y\right)} \geq 0 \\
& =\left[\Delta\left(\hat{y}^{n}, \tilde{y}^{n}\right)+w \cdot \varphi\left(x^{n}, \tilde{y}^{n}\right)\right]-w \cdot \varphi\left(x^{n}, \hat{y}^{n}\right) \\
& \leq \max _{y}\left[\Delta\left(\hat{y}^{n}, y\right)+w \cdot \varphi\left(x^{n}, y\right)\right]-w \cdot \varphi\left(x^{n}, \hat{y}^{n}\right) \\
& =C^{n}
\end{aligned}
$$

More Cost Functions

$\Delta\left(\hat{y}^{n}, \tilde{y}^{n}\right) \leq C^{n}$
Margin rescaling:

$$
C^{n}=\max _{y}\left[\Delta\left(\hat{y}^{n}, y\right)+w \cdot \phi\left(x^{n}, y\right)\right]-w \cdot \phi\left(x^{n}, \hat{y}^{n}\right)
$$

Slack variable rescaling:

$$
C^{n}=\max _{y} \Delta\left(\hat{y}^{n}, y\right)\left[1+w \cdot \phi\left(x^{n}, y\right)-w \cdot \phi\left(x^{n}, \hat{y}^{n}\right)\right]
$$

Outline

Separable case
Considering Errors
Regularization
Structured SVM
Beyond Structured SVM (open question)
Mane Algorithm for Structured SVM

Regularization

Training data and testing data can have different distribution.
w close to zero can minimize the influence of mismatch.

Keep the incorrect answer from a margin depending on errors

$$
C=\sum_{n=1}^{N} C^{n} \quad C=\frac{1}{2}\|w\|^{2}+\lambda \sum_{n=1}^{N} C^{n}
$$

$$
=\max _{v}\left[\Delta\left(\hat{y}^{n}, y\right)+w \cdot \phi\left(x^{n}, y\right)\right]
$$

$$
y
$$

$$
-w \cdot \phi\left(x^{n}, \hat{y}^{n}\right)
$$

Regularization:
Find the w close to zero

Regularization

$$
C=\sum_{n=1}^{N} C^{n} \quad \square C=\frac{1}{2}\|w\|^{2}+\lambda \sum_{n=1}^{N} C^{n}
$$

In each iteration, pick a training data $\left\{x^{n}, \hat{y}^{n}\right\}$

$$
\begin{aligned}
& \bar{y}^{n}=\underset{y}{\operatorname{argmax}}\left[\Delta\left(\hat{y}^{n}, y\right)+w \cdot \phi\left(x^{n}, y\right)\right] \\
& \nabla C^{n}=\phi\left(x^{n}, \bar{y}^{n}\right)-\phi\left(x^{n}, \hat{y}^{n}\right)+w \\
& w \rightarrow w-\eta\left[\phi\left(x^{n}, \bar{y}^{n}\right)-\phi\left(x^{n}, \hat{y}^{n}\right)\right]-\eta w \\
& \quad=(1-\eta) w-\eta\left[\phi\left(x^{n}, \bar{y}^{n}\right)-\phi\left(x^{n}, \hat{y}^{n}\right)\right]
\end{aligned}
$$

Outline

Separable case
Considering Errors
Regularization
Structured SVM
Beyond Structured SVM (open question)
Mlane Algorithm for Structured SVM

Structured SVM

Find w minimizing C

$$
\begin{aligned}
C & =\frac{1}{2}\|w\|^{2}+\lambda \sum_{n=1}^{N} C^{n} \\
C^{n} & =\max _{y}\left[\Delta\left(\hat{y}^{n}, y\right)+w \cdot \phi\left(x^{n}, y\right)\right]-w \cdot \phi\left(x^{n}, \hat{y}^{n}\right)
\end{aligned}
$$

$$
C^{n}+w \cdot \phi\left(x^{n}, \hat{y}^{n}\right)=\max _{y}\left[\Delta\left(\hat{y}^{n}, y\right)+w \cdot \phi\left(x^{n}, y\right)\right]
$$

$$
y
$$

Are they equivalent?

We want to minimize C

For $\forall y$:

$$
\begin{aligned}
& C^{n}+w \cdot \phi\left(x^{n}, \hat{y}^{n}\right) \geq \Delta\left(\hat{y}^{n}, y\right)+w \cdot \phi\left(x^{n}, y\right) \\
& w \cdot \phi\left(x^{n}, \hat{y}^{n}\right)-w \cdot \phi\left(x^{n}, y\right) \geq \Delta\left(\hat{y}^{n}, y\right)-C^{n}
\end{aligned}
$$

Structured SVM

Find w minimizing C

$$
\begin{aligned}
C & =\frac{1}{2}\|w\|^{2}+\lambda \sum_{n=1}^{N} C^{n} \\
C^{n} & =\max _{y}\left[\Delta\left(\hat{y}^{n}, y\right)+w \cdot \phi\left(x^{n}, y\right)\right]-w \cdot \phi\left(x^{n}, \hat{y}^{n}\right)
\end{aligned}
$$

Find $\mathrm{w}, \varepsilon^{1}, \cdots, \varepsilon^{N}$ minimizing C

$$
C=\frac{1}{2}\|w\|^{2}+\lambda \sum_{n=1}^{N} \varepsilon^{n}
$$

For $\forall n$:
Slack variable
For $\forall y$:

$$
w \cdot \phi\left(x^{n}, \hat{y}^{n}\right)-w \cdot \phi\left(x^{n}, y\right) \geq \Delta\left(\hat{y}^{n}, y\right)-\varepsilon^{n}
$$

Structured SVM

Find $w, \varepsilon^{1}, \cdots, \varepsilon^{N}$ minimizing C

$$
C=\frac{1}{2}\|w\|^{2}+\lambda \sum_{n=1}^{N} \varepsilon^{n}
$$

For $\forall n$:

For $\forall y$:

$$
w \cdot \phi\left(x^{n}, \hat{y}^{n}\right)-w \cdot \phi\left(x^{n}, y\right) \geq \Delta\left(\hat{y}^{n}, y\right)-\varepsilon^{n}
$$

For $\forall y \neq \hat{y}^{n}$:

$$
w \cdot\left(\phi\left(x^{n}, \hat{y}^{n}\right)-\phi\left(x^{n}, y\right)\right) \geq \Delta\left(\hat{y}^{n}, y\right)-\varepsilon^{n}, \varepsilon^{n} \geq 0
$$

$$
\text { If } y=\hat{y}^{n}: \frac{w \cdot \phi\left(x^{n}, \hat{y}^{n}\right)-w \cdot \phi\left(x^{n}, \hat{y}^{n}\right)}{=0} \geq \frac{\Delta\left(\hat{y}^{n}, \hat{y}^{n}\right)}{=0}-\varepsilon^{n}
$$

Structured SVM - Intuition

It is possible that no w can achieve this.

Structured SVM - Intuition

$$
\begin{aligned}
& \varepsilon \geq 0 \\
& (\varepsilon<0 \text { make the constraints } \\
& \text { more strict }) \\
& \varepsilon \text { should be minimized }
\end{aligned}
$$

(lots of inequalities)
slack variable

Minimize $\frac{1}{2}\|w\|^{2}+\lambda \sum_{n=1}^{2} \varepsilon^{n}$

For x^{1}

$$
\begin{aligned}
& \text { (lots of inequalities) } \quad \varepsilon^{1} \geq 0
\end{aligned}
$$

For x^{2}

$$
\begin{aligned}
& \text { (lots of inequalities) } \\
& \varepsilon^{2} \geq 0
\end{aligned}
$$

Structured SVM

Find $w, \varepsilon^{1}, \cdots, \varepsilon^{N}$ minimizing C

For $\forall n$:

$$
C=\frac{1}{2}\|w\|^{2}+\lambda \sum_{n=1}^{N} \varepsilon^{n}
$$

$$
\begin{aligned}
& \text { For } \forall y \neq \hat{y}^{n}: \\
& \qquad w \cdot\left(\phi\left(x^{n}, \hat{y}^{n}\right)-\phi\left(x^{n}, y\right)\right) \geq \Delta\left(\hat{y}^{n}, y\right)-\varepsilon^{n}, \varepsilon^{n} \geq 0
\end{aligned}
$$

Solve it by the solver in SVM package

Quadratic Programming (QP) Problem

Too many constraints

Outline

$$
\begin{aligned}
& \hline \text { Separable case } \\
& \hline \text { Considering Errors } \\
& \hline \text { Regularization } \\
& \hline \text { Structured SVM } \\
& \hline \text { Beyond Structured SVM (open question) } \\
& \hline \text { Multi-class and binary SVM } \\
& \hline \text { Slgorithm for Structured SVM } \\
& \hline
\end{aligned}
$$

Find $w, \varepsilon^{1}, \cdots, \varepsilon^{N}$ minimizing C

For $\forall n$:

$$
C=\frac{1}{2}\|w\|^{2}+\lambda \sum_{n=1}^{N} \varepsilon^{n}
$$

For $\forall y \neq \hat{y}^{n}$:

$$
w \cdot\left(\phi\left(x^{n}, \hat{y}^{n}\right)-\phi\left(x^{n}, y\right)\right) \geq \Delta\left(\hat{y}^{n}, y\right)-\varepsilon^{n}, \varepsilon^{n} \geq 0
$$

Source of image: http://abnerguzman.com/pub lications/gkb_aistats13.pdf

Cutting Plane Algorithm

$\left(w, \varepsilon^{1}, \ldots \varepsilon^{N}\right)$

Color is the value of C which is going to be minimized:

$$
C=\frac{1}{2}\|w\|^{2}+\lambda \sum_{n=1}^{N} \varepsilon^{n}
$$

For $\forall r, \forall y, y \neq \hat{y}^{n}$:
$>w \cdot\left(\phi\left(x^{n}, \hat{y}^{n}\right)-\phi\left(x^{n}, y\right)\right)$
$\geq \Delta\left(\hat{y}^{n}, y\right)-\varepsilon^{n}$
$>\varepsilon^{n} \geq 0$

Cutting Plane Algorithm

Although there are lots of constraints, most of them do not influence the solution.

Parameter space

$$
\left(w, \varepsilon^{1}, \ldots, \varepsilon^{N}\right)
$$

Red lines: determine the solution
Green line: Remove this constraint will not influence the solution

\mathbb{A}^{n} : a very small set of $y \rightarrow$ working set

Cutting Plane Algorithm

- Elements in working set \mathbb{A}^{n} is selected iteratively Initialize $\mathbb{A}^{1} \ldots \mathbb{A}^{N}$

Find $w, \varepsilon^{1} \ldots \varepsilon^{N}$ minimizing C

$$
\begin{aligned}
& \text { inimizing C } \\
& C=\frac{1}{2}\|w\|^{2}+\lambda \sum_{n=1}^{N} \varepsilon^{n}
\end{aligned}
$$

Solve a QP problem

For $\forall r$:
For $\forall y \in \mathbb{A}^{n}, y \neq \hat{y}^{n}$:

$$
w \cdot\left(\phi\left(x^{n}, \hat{y}^{n}\right)-\phi\left(x^{n}, y\right)\right) \geq \Delta\left(\hat{y}^{n}, y\right)-\varepsilon^{n} \quad \varepsilon^{n} \geq 0
$$

obtain solution w

Repeatedly
Add elements

Cutting Plane Algorithm

- Strategies of adding elements into working set \mathbb{A}^{n}

Initialize $\mathbb{A}^{n}=$ null

No constraint at all
Solving QP
The solution w is the blue point.

Cutting Plane Algorithm

- Strategies of adding elements into working set \mathbb{A}^{n}

There are lots of constraints is violated
Find the most violated one
Suppose it is the constraint from y'
Extent the working set

$$
\mathbb{A}^{n}=\mathbb{A}^{n} \cup\left\{y^{\prime}\right\}
$$

Cutting Plane Algorithm

- Strategies of adding elements into working set \mathbb{A}^{n}

Find the most violated one

- Given w^{\prime} and ε^{\prime} from working sets at hand, which constraint is the most violated one?
Constraint: $w \cdot(\phi(x, \hat{y})-\phi(x, y)) \geq \Delta(\hat{y}, y)-\varepsilon$
Violate a Constraint:

$$
w^{\prime} \cdot(\phi(x, \hat{y})-\phi(x, y))<\Delta(\hat{y}, y)-\varepsilon^{\prime}
$$

Degree of Violation

$$
\begin{gathered}
\Delta(\hat{y}, y)-\varepsilon^{\prime}-w^{\prime} \cdot(\phi(x, \hat{y})-\phi(x, y)) \\
\longrightarrow \Delta(\hat{y}, y)+w^{\prime} \cdot \phi(x, y)
\end{gathered}
$$

The most violated one:

$$
\arg \max _{y}[\Delta(\hat{y}, y)+w \cdot \phi(x, y)]
$$

Cutting Plane Algorithm

Given training data: $\left\{\left(x^{1}, \hat{y}^{1}\right),\left(x^{2}, \hat{y}^{2}\right), \cdots,\left(x^{N}, \hat{y}^{N}\right)\right\}$
Working Set $\mathbb{A}^{1} \leftarrow$ null, $\mathbb{A}^{2} \leftarrow$ null, $\cdots, \mathbb{A}^{N} \leftarrow$ null
Repeat
$w \leftarrow$ Solve a QP with Working Set $\mathbb{A}^{1}, \mathbb{A}^{2}, \cdots, \mathbb{A}^{N}$

QP: Find $w, \varepsilon^{1} \ldots \varepsilon^{N}$ minimizing $\frac{1}{2}\|w\|^{2}+\lambda \sum_{n=1}^{N} \varepsilon^{n}$
For $\forall n$:
For $\forall y \in \mathbb{A}^{n}$:

$$
w \cdot\left(\phi\left(x^{n}, \hat{y}^{n}\right)-\phi\left(x^{n}, y\right)\right) \geq \Delta\left(\hat{y}^{n}, y\right)-\varepsilon^{n}, \varepsilon^{n} \geq 0
$$

Cutting Plane Algorithm

Given training data: $\left\{\left(x^{1}, \hat{y}^{1}\right),\left(x^{2}, \hat{y}^{2}\right), \cdots,\left(x^{N}, \hat{y}^{N}\right)\right\}$
Working Set $\mathbb{A}^{1} \leftarrow$ null, $\mathbb{A}^{2} \leftarrow$ null, $\cdots, \mathbb{A}^{N} \leftarrow$ null

Repeat

$w \leftarrow$ Solve a QP with Working Set $\mathbb{A}^{1}, \mathbb{A}^{2}, \cdots, \mathbb{A}^{N}$
For each training data $\left(x^{n}, \hat{y}^{n}\right)$:

$$
\bar{y}^{n}=\arg \max _{y}\left[\Delta\left(\hat{y}^{n}, y\right)+w \cdot \phi\left(x^{n}, y\right)\right]
$$

find the most violated constraints
Update working set $\mathbb{A}^{n} \leftarrow \mathbb{A}^{n} \cup\left\{\bar{y}^{n}\right\}$
Until $\mathbb{A}^{1}, \mathbb{A}^{2}, \cdots, \mathbb{A}^{N}$ doesn't change any more Return w

QP: Find $w, \varepsilon^{1}, \varepsilon^{2}$ minimizing

$$
\frac{1}{2}\|w\|^{2}+\lambda \sum_{n=1}^{2} \varepsilon^{n}
$$

There is no constraint

Solution: $w=0$

$\bar{y}^{2}=\arg \max _{y}\left[\Delta\left(\hat{y}^{2}, y\right)+0 \cdot \phi\left(x^{2}, y\right)\right]$

$$
w=w^{1}
$$

QP: Find $w, \varepsilon^{1}, \varepsilon^{2}$ minimizing $\frac{1}{2}\|w\|^{2}+\lambda \sum_{n=1}^{2} \varepsilon^{n}$

$$
\begin{aligned}
& w \cdot\left(\phi(\sqrt{2})-\phi\left(\frac{\square}{2}\right)\right) \geq \Delta(\quad \square)-\varepsilon^{1} \\
& w \cdot\left(\phi(\pi)-\phi(\square)-\varepsilon^{2}\right.
\end{aligned}
$$

Solution: $w=w^{1}$

$\mathbb{A}^{1}=\{\square$ \square
$\mathbb{A}^{2}=\{$

$\square\}$

QP: Find $w, \varepsilon^{1}, \varepsilon^{2}$ minimizing $\frac{1}{2}\|w\|^{2}+\lambda \sum_{r=1}^{2} \varepsilon^{n}$

The process repeats iteratively

$$
\begin{aligned}
& \text {) } \geq \Delta(\\
& \text {) }-\varepsilon^{1} \\
& \begin{array}{l}
w \cdot(\phi(+)-\phi(\\
w \cdot(\phi(+6)
\end{array} \\
&)) \geq \Delta(\\
& \square)-\varepsilon^{2} \\
&)) \geq \Delta(\\
&)-\varepsilon^{2}
\end{aligned}
$$

Concluding Remarks

Separable case
 Non-separable case
 Considering Errors
 Regularization
 Structured SVM

Cutting Plane Algorithm for Structured SVM

Multi-class and binary SVM
Beyond Structured SVM (open question)

Multi-class SVM

$$
F(x, y)=w \cdot \phi(x, y)
$$

- Problem 1: Evaluation
- If there are K classes, then we have K weight vectors $\left\{w^{1}, w^{2}, \cdots, w^{K}\right\}$
$y \in\{1,2, \cdots, k, \cdots, K\}$
$F(x, y)=w^{y} \cdot \vec{x}$
\vec{x} : vector
representation of x

Multi-class SVM

- Problem 2: Inference

$$
\begin{aligned}
& F(x, y)=w^{y} \cdot \vec{x} \\
& \begin{aligned}
\hat{y} & =\arg \max _{y \in\{1,2, \cdots, k, \cdots, K\}} F(x, y) \\
& =\arg \max _{y \in\{1,2, \cdots, k, \cdots, K\}} w^{y} \cdot \vec{x}
\end{aligned}
\end{aligned}
$$

The number of classes are usually small, so we can just enumerate them.

$$
y \in\{d o g, c a t, b u s, c a r\}
$$

Multi-class SVM

- Problem 3: Training

$$
\begin{aligned}
& \Delta\left(\hat{y}^{n}=\operatorname{dog}, y=c a t\right)=1 \\
& \Delta\left(\hat{y}^{n}=\operatorname{dog}, y=b u s\right)=100
\end{aligned}
$$

(defined as your wish)

Find $w, \varepsilon^{1}, \cdots, \varepsilon^{N}$ minimizing C

For $\forall n$:

$$
C=\frac{1}{2}\|w\|^{2}+\lambda \sum_{n=1}^{N} \varepsilon^{n}
$$

For $\forall y \neq \hat{y}^{n}$:
There are only $\mathrm{N}(\mathrm{K}-1)$ constraints.

$$
\left(w^{\hat{y}^{n}}-w^{y}\right) \cdot \vec{x} \quad \geq \Delta\left(\hat{y}^{n}, y\right)-\varepsilon^{n}, \varepsilon^{n} \geq 0
$$

$$
\begin{aligned}
& w \cdot \phi\left(x^{n}, \hat{y}^{n}\right)=w^{\hat{y}^{n}} \cdot \vec{x} \\
& w \cdot \phi\left(x^{n}, y\right)=w^{y} \cdot \vec{x}
\end{aligned}
$$

Some types of misclassifications may be worse than others.

Binary SVM

- Set $\mathrm{K}=2 \quad y \in\{1,2\}$

$$
\begin{aligned}
& \text { For } \forall y \neq \hat{y}^{n} \text { : =1 } \\
& \left(w^{\hat{y}^{n}}-w^{y}\right) \cdot \vec{x} \quad \geq \Delta\left(\hat{y}^{n}, y\right)-\varepsilon^{n}, \varepsilon^{n} \geq 0
\end{aligned}
$$

If $\mathrm{y}=1:\left(w^{1}-w^{2}\right) \cdot \vec{x} \geq 1-\varepsilon^{n} \Rightarrow w \cdot \vec{x} \geq 1-\varepsilon^{n}$ w

If $\mathrm{y}=2:\left(w^{2}-w^{1}\right) \cdot \vec{x} \geq 1-\varepsilon^{n} \quad \Rightarrow-w \cdot \vec{x} \geq 1-\varepsilon^{n}$
$-w$

Concluding Remarks

Separable case
 Non-separable case
 Considering Errors
 Regularization
 Structured SVM

Cutting Plane Algorithm for Structured SVM

Multi-class and binary SVM

Beyond Structured SVM (open question)

Beyond Structured SVM

- Involving DNN when generating $\phi(x, y)$

Ref: Hao Tang, Chao-hong Meng, Lin-shan Lee, "An initial attempt for phoneme recognition using Structured Support Vector Machine (SVM)," ICASSP, 2010 Shi-Xiong Zhang, Gales, M.J.F., "Structured SVMs for Automatic Speech Recognition," in Audio, Speech, and Language Processing, IEEE Transactions on, vol.21, no.3, pp.544-555, March 2013

Beyond Structured SVM

- Jointly training structured SVM and DNN

Ref: Shi-Xiong Zhang, Chaojun Liu, Kaisheng Yao, and Yifan Gong, "DEEP NEURAL SUPPORT VECTOR MACHINES FOR SPEECH RECOGNITION", Interspeech 2015

Beyond Structured SVM

- Replacing Structured SVM with DNN

A DNN with x and y as input and $F(x, y)$ (a scalar) as output

$$
\begin{aligned}
& C=\frac{1}{2}\|\theta\|^{2}+\frac{1}{2}\left\|\theta^{\prime}\right\|^{2}+\lambda \sum_{n=1}^{N} C^{n} \\
& \text { Ref: Yi-Hsiu Liao, Hung-yi Lee, Lin-shan Lee, } \\
& \text { "Towards Structured Deep Neural Network for } \\
& \text { Automatic Speech Recognition", ASRU, } 2015 \\
& C^{n}=\max _{y}\left[\Delta\left(\hat{y}^{n}, y\right)+F\left(x^{n}, y\right)\right]-F\left(x^{n}, \hat{y}^{n}\right) \begin{array}{l}
\text { http://speech.ee.ntu.edu.tw/~tl } \\
\text { kagk/paper/DNN_ASRU15.pdf }
\end{array}
\end{aligned}
$$

Concluding Remarks

Separable case
Non-separable case
Considering Errors
Regularization
Structured SVM
Cutting Plane Algorithm for Structured SVM
Multi-class and binary SVM
Beyond Structured SVM (open question)

Acknowledgement

- 感謝盧柏儒同學於上課時發現投影片上的錯誤
- 感謝徐翊祥同學於上課時發現投影片上的錯誤

